Ahmad Fino's Home Page
  Publications
 
For the pdf files of the following papers, please refer to www.ahmad-fino.sitew.com.

1. Decay of mass for nonlinear equation with fractional Laplacian, Journal of  Monatshefte Fuer Mathematik, 160 (2010) 375–384.  With Grzegorz Karch.

2. Local existence and uniqueness for a semilinear accretive wave equation, Journal of Mathematical Analysis and Applications, 377 (2011) 534–539.
 With Mustapha Jazar.
3. Qualitative Properties of Solutions to a Nonlocal Evolution System, Journal of Mathematical Methods in Applied Sciences, 34 (2011) 1125-1143.
  With Mokhtar Kirane.

4. Critical exponent for damped wave equations with nonlinear memory, Journal of Nonlinear Analysis: Theory, Methods & Applications, 74 (2011) 5495–5505.
 

5. The Peierls-Nabarro model as a limit of a Frenkel-Kontorova model, Journal of Differential Equation 252 (2012) 258-293.  With Régis Monneau & Hassan Ibrahim.

6. Blow-up solutions of second-order differential inequalities with a nonlinear memory term, Journal of Nonlinear Analysis: Theory, Methods & Applications 75 (2012) 3122-3129  With Mustapha Jazar.

7. Qualitative Properties of Solutions to a Time-Space Fractional Evolution Equation,   J. Quart. Appl. Math. 70 (2012), 133-157 .  With Mokhtar Kirane.

8. Decay of mass for fractional evolution equation with memory term,
J. Quart. Appl. Math. 71 (2013), 215-228.  With Hassan Ibrahim & Bilal Barakeh.

9.
Analytical solution for the space-time fractional telegraph equation, Journal of Mathematical Methods in Applied Sciences, 36 (2013) 1813-1824.  With Hassan Ibrahim.


10. Conservation of the mass for solutions to a class of singular parabolic equations, accepted in Kodai Mathematical Journal, 2014.   With Vincenzo Vespri & Fatma Gamze Duzgun. (New one)

11.
Finite time blow-up for a wave equation with a nonlocal nonlinearity, submitted.   With Vladimir Georgiev & Mokhtar Kirane.

12. Blow-up for a semilinear wave equation in odd space dimentions and memory nonlocal nonlinearity, preprint.   With Vladimir Georgiev & Mokhtar Kirane.

13. Finite time blow-up for damped wave equations with nonlinear memory and space-dependent potential, preprint
.  
 
  Aujourd'hui sont déjà 1 visiteurs (6 hits) Ici!  
 
=> Veux-tu aussi créer une site gratuit ? Alors clique ici ! <=